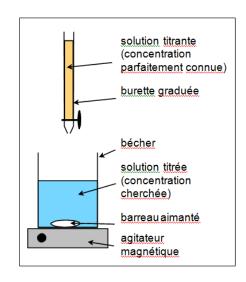
PARTIE 2: LES ACIDES / BASES

Séquence 2 : Contrôle de la qualité par dosage

Séance 2 : Application aux titrages acido - basiques

I. Principe d'un dosage par titrage

1. Définition


Un dosage par titrage a pour but de déterminer la quantité de matière d'une espèce chimique A (ionique ou moléculaire) présente en solution.

Lors d'un titrage, **l'espèce chimique à titrer** (notée A) réagit avec une quantité connue d'une espèce chimique (notée B) appelée **espèce titrante**. C'est une méthode destructive car la réaction chimique consomme l'espèce à doser.

Cette réaction de titrage appelée **réaction de support de titrage** est une **réaction rapide**, **totale** (réactif limitant totalement consommé) **et unique**.

2. Montage expérimental

- La solution contenant l'espèce à doser, réactif titré, est introduite dans un bécher à l'aide d'une pipette jaugée afin d'en connaître très précisément le volume
- Une burette graduée permettant d'introduire de façon progressive un volume connu de la solution appelée solution titrante contenant un réactif titrant choisi en fonction de l'espèce à doser.
- Le dispositif d'agitation assurant l'homogénéisation de la solution.

3. L'équivalence

On verse la solution titrante jusqu'à ce que le réactif titré ait totalement réagit. On dit que l'on est à l'**équivalence**.

Remarque : à chaque ajout de réactif titrant, l'avancement est maximal.

- Avant l'équivalence, le réactif titrant est le réactif limitant (à chaque fois que l'on en verse, il disparaît).
- \circ A l'équivalence, les réactifs sont totalement consommés, ils sont tous les deux limitant et l'avancement prend la valeur x_E .

o **Après l'équivalence**, le réactif titrant est introduit en excès (il n'y a plus de réactif titré donc plus de réaction).

Le volume à l'équivalence V_E est le volume de solution titrante versé pour atteindre l'équivalence.

4. Stoechiométrie de l'équivalence

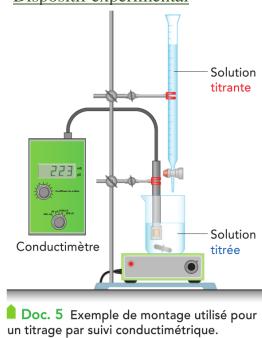
La stoechiométrie de la réaction support d'un titrage doit être prise en compte pour les calculs de quantité de matière ayant réagi à l'équivalence.

Soit une réaction de titrage modélisée par l'équation : α A + β B $\rightarrow \gamma$ C + δ D avec A le réactif titré et B le réactif titrant.

On note $n(A)_i$ la quantité de matière initiale de A dans la solution titrée et $n(B)_E$ la quantité de matière de B versée à l'équivalence.

À l'équivalence les réactifs sont introduits dans les proportions stoechimétriques donc :

$$\frac{n(A)_i}{\alpha} = \frac{n(B)_E}{\beta}$$


n(B)_E étant connu on peut ainsi déterminer n(A)_i et en déduire C_A.

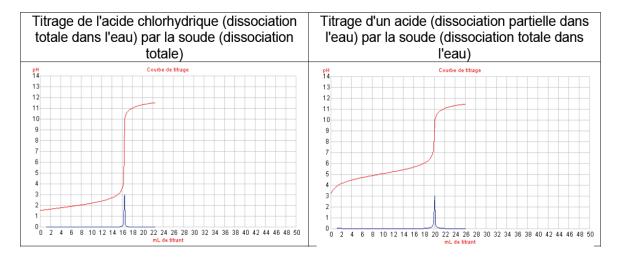
II. Titrage pH - métrique

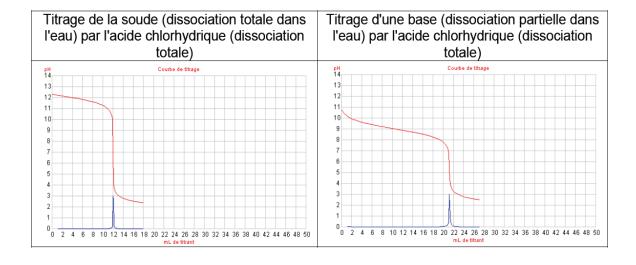
1. Définition

Un titrage pH-métrique peut-être envisagé lorsque la réaction support du titrage est une réaction acido-basique. On mesure le pH de la solution après chaque ajout de solution titrante versée.

2. Dispositif expérimental

3. Courbe de titrage

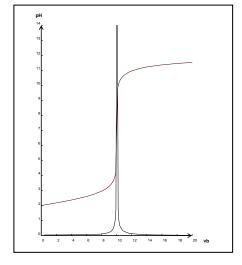

La courbe $pH = f(V_{vers\acute{e}})$ est appelée courbe de titrage $pH - m\acute{e}trique$.


Toute courbe de titrage peut être décomposée en trois parties :

- 1^{re} partie où la variation de pH est faible : le réactif titrant est limitant
- 2^e partie centrale correspondant à une brusque variation de pH appelée « **saut de pH** » autour d'un volume particulier V_E. Le **point équivalent E** se situe dans cette partie
- 3^e partie où le pH se stabilise, le réactif limitant est le réactif titré.

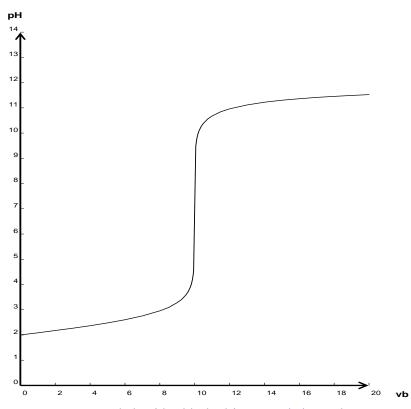
Un titrage pH – métrique est terminé que lorsque la valeur du pH ne varie plus de façon significative.

Quelques exemples de courbes de titrage :


4. Repérage du point d'équivalence

Deux méthodes sont possibles.

• Méthode de la dérivée (méthode logicielle) :


Dans la 2^e partie de la courbe de titrage, le coefficient directeur de la tangente à la courbe atteint un maximum (la tangente est verticale).

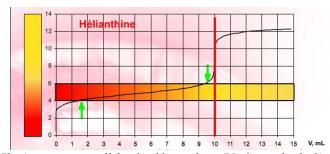
Le volume équivalent V_E correspond donc à l'abscisse du maximum de la courbe donnant $\frac{dpH}{dV} = f(V)$.

Méthode des tangentes parallèles :

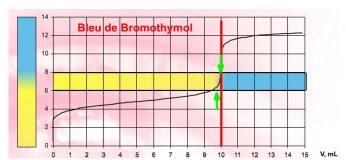
On trace avant et après le saut de pH, deux tangentes à la courbe pH = f(V), parallèles entre elles. On trace ensuite la parallèle à ces deux tangentes et équidistantes de celles-ci. Son intersection avec la courbe pH = f(V) détermine le point équivalent E de coordonnées (V_E, pH_E) .

Dosage de l'acide chlorhydrique par de la soude.

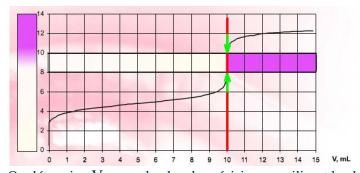
III. Titrage colorimétrique


Lorsque tous les réactifs de la réaction support du titrage sont incolores, l'équivalence peut parfois se repérer par changement de couleur d'un indicateur coloré.

<u>Remarque</u>: il faut ajouter l'indicateur coloré en **faible quantité** (quelques gouttes) dans la prise d'essai pour ne pas perturber les mesures


• Choix de l'indicateur coloré :

On le choisit en fonction du titrage à réaliser. Il faut que la zone de virage de l'indicateur coloré soit franchie lors du saut de pH (doit inclure le pH à l'équivalence) afin que le changement de couleur de l'indicateur soit net.


Exemple du titrage de l'acide éthanoïque (acide faible) par une solution de soude (base forte) :

Il n'est pas possible de déterminer V_E à partir de l'observation du changement de couleur du milieu réactionnel.

Il est possible de déterminer V_E à partir de l'observation du changement de couleur du milieu réactionnel mais avec un petit écart ΔV .

On détermine V_E avec le plus de précision en utilisant la phénolphtaléine comme indicateur coloré.

• <u>Influence de la concentration des réactifs :</u>

Le saut de pH est d'autant plus marqué que les solutions sont plus concentrées et donc la détermination de l'équivalence à l'aide d'un indicateur coloré est d'autant plus précise. Pour un saut de pH très faible, il convient de préférer le titrage conductimétrique.

IV. Titrage conductimétrique

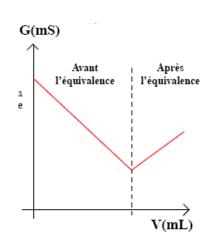
Un titrage conductimétrique ne peut être effectué que si la réaction support du titrage fait intervenir des ions.

1. Principe

Lors d'un titrage conductimétrique, on mesure la conductance G (ou la conductivité σ) de la solution au fur et à mesure de l'addition du réactif titrant.

Exemple:

Titrage conductimétrique d'une solution d'acide chlorhydrique $(H_3O^+_{(aq)} + Cl^-_{(aq)})$, solution A par une solution d'hydroxyde de sodium $(Na^+_{(aq)} + HO^-_{(aq)})$, solution B.


2. Réalisation pratique

A l'aide d'une pipette jaugée ou graduée, on verse dans un bécher un volume V_A connu de la solution A (solution titrée) et la solution B (solution titrante) dans la burette.

Remarque : on place une grande quantité d'eau dans le bécher de telle sorte que la solution soit suffisamment diluée pour que la conductance reste proportionnelle à la concentration.

On ajoute au fur et à mesure la solution B contenue dans la burette et pour chaque valeur V_B ajouté, on relève la valeur de G.

On trace alors le graphe représentant l'évolution de G en fonction de V_B.

3. <u>Equation de la réaction de titrage</u>

Réaction acido-basique : $H_3O^+_{(aq)} + HO^-_{(aq)} \rightarrow 2 \; H_2O_{(l)}$ les ions Na^+ et Cl^- sont spectateurs et ne participent pas à la réaction.

4. Exploitation de la courbe $G = f(V_B)$

La courbe obtenue comporte deux segments de droite de pentes différentes.

• 1^{er} domaine (avant l'équivalence) :

Les ions $H_3O^+_{(aq)}$ de grande conductivité ionque molaire, sont consommés peu à peu par réaction chimique avec l'espèce titrante $HO^-_{(aq)}$. La conductance de la solution diminue.

• 2^e domaine (après l'équivalence) :

L'espèce chimique H₃O⁺_(aq) titrée a été totalement consommée. L'espèce titrante HO⁻_(aq) introduite n'est plus consommée, la conductance de la solution augmente donc.

L'équivalence est repérée par le changement brutal de pente de la courbe de titrage : l'abscisse du point d'intersection est V_E .

V. Expression du résultat d'un titrage

Un titrage doit être réalisé avec beaucoup de soin. Plusieurs sources d'erreurs peuvent être à l'origine d'une incertitude sur les résultats de la mesure :

- **Incertitudes liées aux manipulations** : mauvais ajustement des niveaux de pipetage ; lecture du volume V_E sur la burette, etc...
- Incertitudes liées à la méthode de titrage employée : imprécisions des méthodes graphiques ou visuelles lors de la détermination V_E ; imprécision de la valeur de la concentration de la solution titrante, etc...
- **Incertitudes liées à la verrerie** : tolérance de ± 0,02 mL pour une pipette jaugée et de ± 0,05 mL pour une burette graduée.